
Adapting IRM/Linac Software
Implementing new projects

Mon, Jul 15, 2002

Many projects have been supported by Linac/IRM front-ends at Fermilab. This note 
describes some of the choices and steps required to implement a new project.

I/O interfaces
One of the earliest steps taken is determining what I/O interfaces will be used in a 

new project. For the case of an IRM, analog and digital interfaces are already available inside 
the crate. Eight bytes of digital I/O are available, configured as input or outbut by the byte. 
In addition, 64 channels of 16-bit analog data are included, in which the entire set of 64 
channels is digitized automatically by hardware at a 1 KHz rate and stored into a circular 
buffer with room for 512 sets of such data. Additional IP boards can be added to support a set 
of 8 timers, a set of 8 fast digitizer channels that can be digitized at rates up to 800 KHz, or 
another set of 8 that can be digitized at rates up to 10 MHz. These are not the only choices, 
but they may be enough to get the discussion started.

After deciding on the I/O interfaces that will be used to acquire data, some thought may be 
given to the kinds of control available. The digital data can be controlled as bytes configured 
for outputs. Analog data can be supported by a set of 8 D/A channels, which are included 
with the usual 64 channel analog interface.

Characterization of what signals relate to what I/O interfaces is done via instructions entered 
into the nonvolatile Data Access Table, which describes how the data pool is to be updated 
each 15 Hz cycle. A large number of instruction types are available within the basic system 
software. Additional needs can be met by writing one or more local applications that update 
a portion of the data pool. The local applications are normally invoked at the end of the Data 
Access Table processing, when raw data from the I/O interfaces is freshly available. Once the 
data pool has been updated, all data looks the same—merely entries in analog and digital 
data tables.

Active data requests for which a reply is due on the current cycle are fulfilled from the data 
pool and replies delivered to the requesting nodes. This process is designed to operate 
efficiently, as the original data request was “compiled” into an internal representation during 
initial processing.

The next major step inside the system is to scan for alarm conditions of all analog and digital 
data for which alarm scanning is enabled, a job that typically requires less than 1 ms. Next, 
the local page application is given a chance to run. The entire process of data pool update, 
request fulfillment, and alarm scanning, begins again on the next 15 Hz cycle.

A description of each analog channel and digital bit is needed, so that data requests can be 
suitably fulfilled. For Acnet, this is done via the process of DABBEL entry, which enters the 
relevant device parameters into the central database. Following batch processing of DABBEL 
commands, a special post-processing program downloads the information to the front-end so 
that the appropriate tables can be set up.

Nonvolatile system tables relating to characterization
The Data Access Table contains a list of instructions that define how to update the data 

pool every 15 Hz cycle. Some instructions are built-in as part of the basic system code. 



Additional abilities can be created via local application programs, which are separately 
compiled and downloaded from the basic system. The only external functions referenced by 
a local application are within the system code; local applications do not directly reference 
each other. As a result, local applications can be loaded or unloaded, activated or deactivated 
in any order. They serve as modular extensions of the system code to satisfy specific needs 
for data pool update, closed loop algorithms, support of network protocols, and diagnostics.

The Analog Descriptor Table defines fixed attributes of analog channels, including device 
specifications for settable channels and related digital status and control bits. Its entries are 
downloaded as a result of the automatic post-processing following DABBEL database entry. 
The Analog Data Table can be considered the integer analog data pool, as its entries contain 
dynamic attributes for each analog channel, including the reading, setting, nominal, tolerance 
and alarm flags. A parallel table for raw floating point analog channels is also available. Fast 
digitizer parameters are defined by entries in the Channel Information Table, or CINFO. The 
Binary Address Table defines how each byte of digital data is to be read or set. The Binary 
Descriptor Table includes descriptive text for each digital bit. The Binary Alarm Table, which 
includes the digital alarm flags and trip counts, along with the Binary Byte Table, which 
holds the most recent byte readings, comprise the digital data pool. The Combined Status 
Table, or CSTAT, specifies how digital status words are constructed from the basic raw binary 
data in the digital data pool.

Entries in the Data Access, CINFO, CSTAT, and Binary Address tables are set via memory 
accesses to those areas of memory where the tables reside, usually by using the Memory 
Dump page application. Other page applications assist in entering parameters for the Binary 
Descriptor and Binary Alarm tables. A special utility is available that runs on a PC to help 
initialize Data Access Table entries.

Local application parameters are set via a special page application that acts as the common 
user interface for all local application instances within a front-end.

Note that since any front-end can access any other front-end, a page application may run in 
any front-end to help configure any other. Even when “little console” hardware is 
unavailable, a so-called “Page G” emulator can run on various platforms to gain access to 
and operate any page application in any front-end.

Adapting IRM/Linac Software p. 2


